Select Page

RODEM

Robust Deep Density Models for
High-Energy Physics and Solar Physics

A Sinergia research project funded by the Swiss National Science Foundation SNSF 2021-2024

High Energy Physics and Solar Physics face similar challenges.

Simulation of a Higgs boson in the Large Hadron Collider at Cern

arrow pointing to LHC image
Simulation of a Higgs boson in
the
Large Hadron Collider ©Cern/LucasTaylor

the huge amount
of data

the high dimension-
ality of signals

the complexity
of phenomena

A solar flare triggered a mass ejection

arrow pointing to solar flare image
Solar flare trigering a burst of X-rays, plasma,
and energetic particles ©NASA/SDO

Finding relevant cases in this data deluge

can potentially revolutionize physics!

But we need to find the needle in the haystack.

We develop new machine learning methods
for better science in High Energy Physics and Solar Physics.

RODEM in a nutshell

RODEM is a SNSF/SINERGIA project fostering cooperation between high energy physicists, solar physicists and experts in machine learning in Switzerland to advance research methodologies in both fields.

During the last decade, the amount of data available to scientists has increased enormously. New infrastructures, such as the Large Hadron Collider (LHC), and a new generation of solar observatories, such as the Solar Dynamics Observatory (SDO), produce data on a scale that cannot be exploited to their full extent with existing methods.

Simultaneously, data science has experienced real game changing breakthroughs in the past years. In particular, deep learning methods have shown the potential of data driven approaches compared to traditional algorithmic approaches. The following questions will shape research stragegies.

➤  Can data driven methods support us in unraveling new physics?

➤  Can physics support us in making better deep learning models?

Now is the time to unite our experience in both physics and machine learning to deeply dive into the many challenges of this combination. The rewards will undoubtedly bring both domains forward, resulting in better forecasting tools, generative models and anomaly detectors to be applied in the fields of High Energy Physics and Solar Physics.

Institutes and labs working on RODEM

UniGE

Département d’Informatique
Project coordinator
francois.fleuret(at)unige.ch
@francois.fleuret

UniGE

Département de Physique Nucléaire et Corpusculaire
tobias.golling(at)unige.ch
@TGolling

UniGE

Computer Vision and Multimedia Laboratory
slava.voloshynovskiy(at)unige.ch
@voloshynovskiy

FHNW

School of Engineering
Institute for Data Science
andre.csillaghy(at)fhnw.ch
@FHNW_astro